Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Quantum electronics for atomic physics and telecommunication / Warren Nagourney.

By: Material type: TextTextSeries: Oxford graduate textsPublication details: Oxford : Oxford University Press, 2014.Edition: 2nd edDescription: xv, 475 p. : illustrations ; 26 cmISBN:
  • 9780199665488 (hbk.)
Subject(s): DDC classification:
  • 537.5 23 N152
Contents:
1.Gaussian beams -- 1.1.Introduction -- 1.2.The paraxial wave equation -- 1.3.Gaussian beam functions and the complex beam parameter, q -- 1.4.Some Gaussian beam properties -- 1.5.The phase term: Gouy phase -- 1.6.Simple transformation properties of the complex beam parameter -- 1.7.Matrix formulation of paraxial ray optics: ABCD rule -- 1.8.Further reading -- 1.9.Problems -- 2.Optical resonators - geometrical properties -- 2.1.Introduction -- 2.2.The two-mirror standing-wave cavity -- 2.3.Stability -- 2.4.Solution for an arbitrary two-mirror stable cavity -- 2.5.Higher-order modes -- 2.6.Resonant frequencies -- 2.7.The traveling-wave (ring) cavity -- 2.8.Astigmatism in a ring cavity -- 2.9.Mode matching -- 2.10.Beam quality characterization: the M2 parameter -- 2.11.Further reading -- 2.12.Problems -- 3.Energy relations in optical cavities -- 3.1.Introduction -- 3.2.Reflection and transmission at an interface -- Contents note continued: 3.3.Reflected fields from standing-wave cavity -- 3.4.Internal (circulating) field in a standing-wave cavity -- 3.5.Reflected and internal intensities -- 3.6.The resonant character of the reflected and circulating intensities -- 3.7.Impedance matching -- 3.8.Fields and intensities in ring cavity -- 3.9.A novel "reflective" coupling scheme using a tilted wedge -- 3.10.Photon lifetime -- 3.11.The quality factor, Q -- 3.12.Relation between Q and finesse -- 3.13.Alternative representation of cavity loss -- 3.14.Experimental determination of cavity parameters -- 3.15.Farther reading -- 3.16.Problems -- 4.Optical cavity as frequency discriminator -- 4.1.Introduction -- 4.2.A simple example -- 4.3.Side of resonance discriminant -- 4.4.The manipulation of polarized beams: the Jones calculus -- 4.5.The polarization technique -- 4.6.Frequency modulation -- 4.7.The Pound--Drever--Hall approach -- 4.8.Frequency response of a cavity-based discriminator -- Contents note continued: 4.9.Further reading -- 4.10.Problems -- 5.Laser gain and some of its consequences -- 5.1.Introduction -- 5.2.The wave equation -- 5.3.The interaction term -- 5.4.The rotating-wave approximation -- 5.5.Density matrix of two-level system -- 5.6.The classical Bloch equation -- 5.7.Connection between two-level atom and spin-1/2 system -- 5.8.Radiative and collision-induced damping -- 5.9.The atomic susceptibility and optical gain -- 5.10.The Einstein A and B coefficients -- 5.11.Doppler broadening: an example of inhomogeneous broadening -- 5.12.Comments on saturation -- 5.13.Further reading -- 5.14.Problems -- 6.Laser oscillation and pumping mechanisms -- 6.1.Introduction -- 6.2.The condition for laser oscillation -- 6.3.The power output of a laser -- 6.4.Pumping in three-level and four-level laser systems -- 6.5.Laser oscillation frequencies and pulling -- 6.6.Inhomogeneous broadening and multimode behavior -- 6.7.Spatial hole burning -- Contents note continued: 6.8.Some consequences of the photon model for laser radiation -- 6.9.The photon statistics of laser radiation -- 6.10.The ultimate linewidth of a laser -- 6.11.Further reading -- 6.12.Problems -- 7.Descriptions of specific CW laser systems -- 7.1.Introduction -- 7.2.The He-Ne laser -- 7.3.The argon-ion laser -- 7.4.The continuous-wave organic dye laser -- 7.5.The titanium--sapphire laser -- 7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser -- 7.7.The YAG non-planar ring oscillator: a novel ring laser geometry -- 7.8.Diode-pumped solid-state (DPSS) YAG lasers -- 7.9.Further reading -- 8.Laser gain in a semiconductor -- 8.1.Introduction -- 8.2.Solid-state physics background -- 8.3.Optical gain in a semiconductor -- 8.4.Further reading -- 8.5.Problems -- 9.Semiconductor diode lasers -- 9.1.Introduction -- 9.2.The homojunction semiconductor laser -- 9.3.The double heterostructure laser -- 9.4.Quantum-well lasers -- Contents note continued: 9.5.Distributed feedback lasers -- 9.6.The rate equations and relaxation oscillations -- 9.7.Diode laser frequency control and linewidth -- 9.8.External cavity diode lasers (ECDLs) -- 9.9.Semiconductor laser amplifiers and injection locking -- 9.10.Miscellaneous characteristics of semiconductor lasers -- 9.11.Further reading -- 9.12.Problems -- 10.Guided-wave devices and fiber lasers -- 10.1.Introduction -- 10.2.Slab waveguide: preliminary analysis -- 10.3.Wave propagation in a slab waveguide -- 10.4.Wave propagation in a fiber -- ray theory -- 10.5.Wave propagation in a fiber -- wave theory -- 10.6.Dispersion in fibers and waveguides -- 10.7.Coupling into optical fibers -- 10.8.Fiber-optic components -- 10.8.1.Directional coupler -- 10.8.2.The loop reflector -- 10.8.3.Fiber Bragg gratings -- 10.8.4.Optical isolators and circulators -- 10.8.5.Amplitude and phase modulation -- 10.8.6.Polarization-preserving fibers -- 10.8.7.Polarization controller -- Contents note continued: 10.9.The physics of rare earth ions in glasses -- 10.10.Some specific fiber lasers -- 10.10.1.Fiber laser resonators -- 10.10.2.Erbium and erbium/ytterbium lasers -- 10.10.3.Neodymium lasers -- 10.10.4.Ytterbium lasers -- 10.10.5.Thulium lasers -- 10.11.Further reading -- 10.12.Problems -- 11.Mode-locked lasers and frequency metrology -- 11.1.Introduction -- 11.2.Theory of mode locking -- 11.3.Mode-locking techniques -- 11.4.Dispersion and its compensation -- 11.5.The mode-locked Ti-sapphire laser -- 11.6.Mode-locked fiber lasers -- 11.7.Frequency metrology using a femtosecond laser -- 11.8.The carrier envelope offset -- 11.9.Comb generation in a microresonator -- 11.10.Further reading -- 11.11.Problems -- 12.Laser frequency stabilization and control systems -- 12.1.Introduction -- 12.2.Laser frequency stabilization -- a first look -- 12.3.The effect of the loop filter -- 12.4.Elementary noise considerations -- 12.5.Some linear system theory -- Contents note continued: 12.6.The stability of a linear system -- 12.7.Negative feedback -- 12.8.Some actual control systems -- 12.9.Temperature stabilization -- 12.10.Laser frequency stabilization -- 12.11.Optical-fiber phase noise and its cancellation -- 12.12.Characterization of laser frequency stability -- 12.13.Frequency locking to a noisy resonance -- 12.14.Further reading -- 12.15.Problems -- 13.Atomic and molecular discriminants -- 13.1.Introduction -- 13.2.Sub-Doppler saturation spectroscopy -- 13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy -- 13.4.An example of a side-of-line atomic discriminant -- 13.5.Further reading -- 13.6.Problems -- 14.Nonlinear optics -- 14.1.Introduction -- 14.2.Anisotropic crystals -- 14.3.Second-harmonic generation -- 14.4.Birefringent phase matching -- 14.5.Quasi-phase matching -- 14.6.Second-harmonic generation using a focused beam -- 14.7.Second-harmonic generation in a cavity -- Contents note continued: 14.8.Sum-frequency generation -- 14.9.Periodically poled optical waveguides -- 14.10.Parametric interactions -- 14.11.Further reading -- 14.12.Problems -- 15.Frequency and amplitude modulation -- 15.1.Introduction -- 15.2.The linear electro-optic effect -- 15.3.Bulk electro-optic modulators -- 15.4.Traveling-wave electro-optic modulators -- 15.5.Acousto-optic modulators -- 15.6.Further reading -- 15.7.Problems-- References-- Index.
Summary: This book discusses theoretical and practical aspects for generating and manipulating laser radiation. The second edition includes a new complete chapter on fiber lasers, as well as new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

1.Gaussian beams --
1.1.Introduction --
1.2.The paraxial wave equation --
1.3.Gaussian beam functions and the complex beam parameter, q --
1.4.Some Gaussian beam properties --
1.5.The phase term: Gouy phase --
1.6.Simple transformation properties of the complex beam parameter --
1.7.Matrix formulation of paraxial ray optics: ABCD rule --
1.8.Further reading --
1.9.Problems --
2.Optical resonators - geometrical properties --
2.1.Introduction --
2.2.The two-mirror standing-wave cavity --
2.3.Stability --
2.4.Solution for an arbitrary two-mirror stable cavity --
2.5.Higher-order modes --
2.6.Resonant frequencies --
2.7.The traveling-wave (ring) cavity --
2.8.Astigmatism in a ring cavity --
2.9.Mode matching --
2.10.Beam quality characterization: the M2 parameter --
2.11.Further reading --
2.12.Problems --
3.Energy relations in optical cavities --
3.1.Introduction --
3.2.Reflection and transmission at an interface --
Contents note continued: 3.3.Reflected fields from standing-wave cavity --
3.4.Internal (circulating) field in a standing-wave cavity --
3.5.Reflected and internal intensities --
3.6.The resonant character of the reflected and circulating intensities --
3.7.Impedance matching --
3.8.Fields and intensities in ring cavity --
3.9.A novel "reflective" coupling scheme using a tilted wedge --
3.10.Photon lifetime --
3.11.The quality factor, Q --
3.12.Relation between Q and finesse --
3.13.Alternative representation of cavity loss --
3.14.Experimental determination of cavity parameters --
3.15.Farther reading --
3.16.Problems --
4.Optical cavity as frequency discriminator --
4.1.Introduction --
4.2.A simple example --
4.3.Side of resonance discriminant --
4.4.The manipulation of polarized beams: the Jones calculus --
4.5.The polarization technique --
4.6.Frequency modulation --
4.7.The Pound--Drever--Hall approach --
4.8.Frequency response of a cavity-based discriminator --
Contents note continued: 4.9.Further reading --
4.10.Problems --
5.Laser gain and some of its consequences --
5.1.Introduction --
5.2.The wave equation --
5.3.The interaction term --
5.4.The rotating-wave approximation --
5.5.Density matrix of two-level system --
5.6.The classical Bloch equation --
5.7.Connection between two-level atom and spin-1/2 system --
5.8.Radiative and collision-induced damping --
5.9.The atomic susceptibility and optical gain --
5.10.The Einstein A and B coefficients --
5.11.Doppler broadening: an example of inhomogeneous broadening --
5.12.Comments on saturation --
5.13.Further reading --
5.14.Problems --
6.Laser oscillation and pumping mechanisms --
6.1.Introduction --
6.2.The condition for laser oscillation --
6.3.The power output of a laser --
6.4.Pumping in three-level and four-level laser systems --
6.5.Laser oscillation frequencies and pulling --
6.6.Inhomogeneous broadening and multimode behavior --
6.7.Spatial hole burning --
Contents note continued: 6.8.Some consequences of the photon model for laser radiation --
6.9.The photon statistics of laser radiation --
6.10.The ultimate linewidth of a laser --
6.11.Further reading --
6.12.Problems --
7.Descriptions of specific CW laser systems --
7.1.Introduction --
7.2.The He-Ne laser --
7.3.The argon-ion laser --
7.4.The continuous-wave organic dye laser --
7.5.The titanium--sapphire laser --
7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser --
7.7.The YAG non-planar ring oscillator: a novel ring laser geometry --
7.8.Diode-pumped solid-state (DPSS) YAG lasers --
7.9.Further reading --
8.Laser gain in a semiconductor --
8.1.Introduction --
8.2.Solid-state physics background --
8.3.Optical gain in a semiconductor --
8.4.Further reading --
8.5.Problems --
9.Semiconductor diode lasers --
9.1.Introduction --
9.2.The homojunction semiconductor laser --
9.3.The double heterostructure laser --
9.4.Quantum-well lasers --
Contents note continued: 9.5.Distributed feedback lasers --
9.6.The rate equations and relaxation oscillations --
9.7.Diode laser frequency control and linewidth --
9.8.External cavity diode lasers (ECDLs) --
9.9.Semiconductor laser amplifiers and injection locking --
9.10.Miscellaneous characteristics of semiconductor lasers --
9.11.Further reading --
9.12.Problems --
10.Guided-wave devices and fiber lasers --
10.1.Introduction --
10.2.Slab waveguide: preliminary analysis --
10.3.Wave propagation in a slab waveguide --
10.4.Wave propagation in a fiber --
ray theory --
10.5.Wave propagation in a fiber --
wave theory --
10.6.Dispersion in fibers and waveguides --
10.7.Coupling into optical fibers --
10.8.Fiber-optic components --
10.8.1.Directional coupler --
10.8.2.The loop reflector --
10.8.3.Fiber Bragg gratings --
10.8.4.Optical isolators and circulators --
10.8.5.Amplitude and phase modulation --
10.8.6.Polarization-preserving fibers --
10.8.7.Polarization controller --
Contents note continued: 10.9.The physics of rare earth ions in glasses --
10.10.Some specific fiber lasers --
10.10.1.Fiber laser resonators --
10.10.2.Erbium and erbium/ytterbium lasers --
10.10.3.Neodymium lasers --
10.10.4.Ytterbium lasers --
10.10.5.Thulium lasers --
10.11.Further reading --
10.12.Problems --
11.Mode-locked lasers and frequency metrology --
11.1.Introduction --
11.2.Theory of mode locking --
11.3.Mode-locking techniques --
11.4.Dispersion and its compensation --
11.5.The mode-locked Ti-sapphire laser --
11.6.Mode-locked fiber lasers --
11.7.Frequency metrology using a femtosecond laser --
11.8.The carrier envelope offset --
11.9.Comb generation in a microresonator --
11.10.Further reading --
11.11.Problems --
12.Laser frequency stabilization and control systems --
12.1.Introduction --
12.2.Laser frequency stabilization --
a first look --
12.3.The effect of the loop filter --
12.4.Elementary noise considerations --
12.5.Some linear system theory --
Contents note continued: 12.6.The stability of a linear system --
12.7.Negative feedback --
12.8.Some actual control systems --
12.9.Temperature stabilization --
12.10.Laser frequency stabilization --
12.11.Optical-fiber phase noise and its cancellation --
12.12.Characterization of laser frequency stability --
12.13.Frequency locking to a noisy resonance --
12.14.Further reading --
12.15.Problems --
13.Atomic and molecular discriminants --
13.1.Introduction --
13.2.Sub-Doppler saturation spectroscopy --
13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy --
13.4.An example of a side-of-line atomic discriminant --
13.5.Further reading --
13.6.Problems --
14.Nonlinear optics --
14.1.Introduction --
14.2.Anisotropic crystals --
14.3.Second-harmonic generation --
14.4.Birefringent phase matching --
14.5.Quasi-phase matching --
14.6.Second-harmonic generation using a focused beam --
14.7.Second-harmonic generation in a cavity --
Contents note continued: 14.8.Sum-frequency generation --
14.9.Periodically poled optical waveguides --
14.10.Parametric interactions --
14.11.Further reading --
14.12.Problems --
15.Frequency and amplitude modulation --
15.1.Introduction --
15.2.The linear electro-optic effect --
15.3.Bulk electro-optic modulators --
15.4.Traveling-wave electro-optic modulators --
15.5.Acousto-optic modulators --
15.6.Further reading --
15.7.Problems--
References--
Index.

This book discusses theoretical and practical aspects for generating and manipulating laser radiation. The second edition includes a new complete chapter on fiber lasers, as well as new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in